Dräger

Dräger X-pid® 8500/9000/9500 Product Specification V5 – 24.01.2020

2 Product specification

1 Overview sensor unit

The technical data of the control unit has to be considered separately in its instructions of use.

Ambient conditions:					
at operation	−10 to +35 °C				
	700 to 1300 hPa				
	10 to 95 % RH				
Protection class	IP 54				
	Gas inlets and outlets have to be protected from water and				
	dust. The water and dust filter has to be fitted at all times.				
Operating times	typically 8 h,				
	reduces with lower ambient temperatures				
	400 004 50 (W. H. T)				
Dimensions	ca. 132 x 281 x 56 mm (W x H x T)				
Weight	ca. 880 g				
Approvals:					
ATEX	II 1G Ex ia IIC T4 Ga				
IECEx	Ex ia IIC T4 Ga				
cCSAus	Class I, Div. 1 Group A, B, C & D T4, Ex ia				
	Class I, Zone 0, A/Ex ia IIC T4 Ga				
CE Marking	RED (Directive 2014/53/EU)				
	ATEX (Directive 2014/34/EU)				
Measurement mode See	ker: (only 9x00)				
Sensor	10.6 eV PID (Seeker-PID)				
Conto	Sensitive for compounds < 10.6 eV ionization energy				
Precision ¹	< 2 % at 10.0 ppm isobutylene				
$(k = 1, \sim 68 \%)$	< 2 % at 5.00 ppm benzene				
Precision ¹	< 4 % at 10.0 ppm isobutylene				
$(k = 2, \sim 95 \%)$	< 4 % at 5.00 ppm benzene				
Limit of detection ²	0.01 ppm (isobutylene response)				
Upper range ³	60.0 ppm (isobutylene response)				

.

 $^{^1}$ Measure for the repeatability of measurement results at identical circumstances. The precision was determined as the k-fold relative standard deviation (standard or expanded uncertainty, \sim 68 or \sim 95 % confidence interval) for measurements over the course of two days of five hours each with a break but no calibration between days. Therefore, with sufficient sample size, \sim 68% or 95 % of measurement results will vary less than the corresponding precision. The precision does not describe the difference from measurement results and true concentration that may actually be present

present.

² Lowest concentration that can be detected thus at which the sensor (PID) returns a signal. The limit of detection (LOD) depends on the sensitivity of the sensor. The LOD is valid for 100 % sensitivity of the respective PID, a parameter which is determined during calibration and that can be viewed in the archive in the user interface of the control unit.

³ Highest concentration that can be measured thus at which the sensor (PID) returns a signal within the specification of the device.

Resolution	0.01 ppm from 0 to 9.99 ppm 0.1 ppm from 10 to 99.9 ppm					
	1 ppm from 10 to 99.9 ppm 1 ppm from 100 ppm					
Measurement duration	direct reading					
Response time t ₉₀	ca. 45 seconds (isobutylene, without hose)					
Selectivity	Sum concentration assuming isobutylene response for entire					
	signal.					
	No selectivity between detectable compounds.					
Measurement mode Ana	lysis:					
Sensor	10.6 eV PID (Analysis-PID) after separation with gas					
	chromatography					
	Sensitive for compounds < 10.6 eV ionization energy and					
	boiling point < 150 °C					
Precision ¹	< 2 % at 10.0 ppm isobutylene					
$(k = 1, \sim 68 \%)$	< 2 % at 5.00 ppm benzene					
Precision ¹	< 4 % at 10.0 ppm isobutylene					
$(k = 2, \sim 95 \%)$	< 4 % at 5.00 ppm benzene					
Limit of detection ²	Compound-specific, see technical manual					
	0.07 ppm isobutylene					
	0.02 ppm benzene					
Limit of quantification ⁴	Compound-specific, see technical manual					
	0.20 ppm isobutylene					
	0.05 ppm benzene					
Upper range ³	Compound-specific, see technical manual					
	100 ppm isobutylene					
	25.0 ppm benzene					
Resolution	0.01 ppm from 0 to 9.99 ppm					
	0.1 ppm from 10 to 99.9 ppm					
	1 ppm from 100 ppm					
Analysis duration	Compound-specific, limited by least volatile compound					
	20 s isobutylene analysis program					
	30 s benzene analysis program					
	30 s isobutylene & benzene analysis program					
Response time t ₉₀	none					
	(if sample concentration at start of the analysis is at device)					
Selectivity	Compound-specific, see technical manual					
	For benzene there are no cross-sensitivities to toluene,					
	ethylbenzene, xylene isomers, n-hexane and many other VO					
	with different volatility. Benzene has a known cross-sensitivity					
	to cyclohexane.					

⁴ Lowest concentration that can be measured thus at which the sensor (PID) returns a signal within the specification, i.e. the precision of the device. The limit of quantification (LOQ) depends on the sensitivity of the sensor. The LOQ is valid for 100 % sensitivity of the Analysis-PID, a parameter which is determined during calibration and that can be viewed in the archive in the user interface of the control unit.

The LOQ is equal to three-times the LOD. At lower concentrations rising signals ("peaks") in the chromatogram of measurement mode Analysis do not sufficiently differ from the noise of the sensor.

4 Product specification

2 Target compounds (Analysis)

In measurement mode Analysis, the Dräger X-pid® x000 is limited to the target compounds benzene and 1,3-butadiene. For the Dräger X-pid® x500 the following target compounds are qualified and quantified.

		<i>t</i> _R ⁵ , s	LOD ² ,	LOQ⁴,	Upper
Target compounds	CAS number		ppm	ppm	range ³ , ppm
Acetone	67-64-1	8.1	0.17	0.50	50.0
Acrolein	107-02-8	7.8	0.33	1.00	100
Benzene	71-43-2	19.3	0.02	0.05	25.0
Butadiene, 1,3-	106-99-0	6.4	0.07	0.20	25.0
Butyl acetate	123-86-4	64.3	0.67	2.00	220
Carbon disulfide	75-15-0	9.8	0.33	1.00	110
Cyclohexane	110-82-7	20.3	0.67	2.00	200
Dichloroethene, 1,1-	75-35-4	8.9	0.07	0.20	50.0
Dichloroethene, cis-1,2-	156-59-2	13.4	0.07	0.20	50.0
Dichloroethene, trans-1,2-	156-60-5	10.9	0.07	0.20	50.0
Ethylbenzene	100-41-4	88.7	1.00	3.00	300
Ethylene oxide	75-21-8	6.8	0.33	1.00	100
Heptane, n-	142-82-5	27.1	5.00	15.0	500
Hexane, n-	110-54-3	13.7	0.33	1.00	100
Isobutylene	115-11-7	6.3	0.07	0.20	100
Isopropyl alcohol	67-63-0	9.1	1.00	3.00	200
Methyl acrylate	96-33-3	14.4	0.67	2.00	200
Methyl bromide	74-83-9	6.8	0.17	0.50	100
Phosphine	7803-51-2	5.3	0.67	2.00	100
Propylene oxide	75-56-9	8.2	0.17	0.50	25.0
Styrene	100-42-5	111.3	1.00	3.00	300
Tetrachloroethylene	127-18-4	58.9	0.67	2.00	150
Tetrahydrofuran	109-99-9	16.5	1.00	3.00	200
Toluene	108-88-3	41.6	0.33	1.00	100
Trichloroethylene	79-01-6	24.9	0.33	1.00	100
Vinyl chloride	75-01-4	6.3	0.33	1.00	100
Xylene, m-	108-38-3	95.7	1.00	3.00	300
Xylene, o-	95-47-6	114.5	1.00	3.00	300
Xylene, p-	106-42-3	96.6	1.00	3.00	300

⁵ Retention time

Product specification 5

For the Dräger X-pid® x500, further target compounds are qualified, but not quantified. Not always was the measurement range experimentally determined, instead no information is provided in these cases.

			LOD ² ,	LOQ⁴,	Upper
Target compounds	CAS number	<i>t</i> _R ⁵ , s	ppm	ppm	range ³ , ppm
Butanone, 2-	78-93-3	12,9	1.00	3.00	300
Butyl acrylate	141-32-2	125,5	-	-	-
Chlorobenzene	108-90-7	75,6	1.00	3.00	200
Epichlorohydrin	106-89-8	27,3	0.67	2.00	200
Ethyl acetate	141-78-6	14,6	1.00	3.00	300
Ethyl acrylate	140-88-5	24,9	1.00	3.00	200

Qualified target compounds can be added to analysis programs and be assigned due to their retention time during analyses. The concentration calculation takes place using simplified assumptions as standards without the claim of high accuracy.

For more information see technical manual.

https://static.draeger.com/Handbook/en/X-PID/view/chapter65.html